Молекула вкуса – Как эффективно использовать микроволновку? – видео-рецепт. Смотрите Молекула вкуса на Телеканале «Еда»

Содержание

Молекула вкуса – видео-рецепты приготовления блюд на Телеканале «Еда»

Войти или зарегистрироваться

Авторизуйтесь через соцсети и вы получите доступ к неограниченному избранному, а также скоро вы сможете составлять свою поваренную книгу

Подборщик рецептов Ещё настройки Скрыть настройки

33 выпуска 6 комментариев

Царь плиты. Сезон 2

Самая что ни на Есть Польша

Гастрономическая карта России. Карелия

Гастрономическая карта России. Териберка

Завтрак на завтра

Братья по сахару

Исключительная еда

Чтобы похудеть

Ужин? Не проблема!

Гости, на кухню!

Первое, второе, третье

Кто готовит — тот не моет

Привет, Италия!

Кухня по заявкам

Яйца в профиль и анфас

Реально! Кондитер

Молекула вкуса

Полный пельмень

Реально! Кондитер. Базовые рецепты

Правило тарелки

Маргарита и мастера

Как сохранить витамины? – видео-рецепт. Смотрите Молекула вкуса на Телеканале «Еда»

Войти или зарегистрироваться

Авторизуйтесь через соцсети и вы получите доступ к неограниченному избранному, а также скоро вы сможете составлять свою поваренную книгу

Подборщик рецептов Ещё настройки Скрыть настройки

0 комментариев

Следующие выпуски программы

0 комментариев

Выпуски программы «Молекула вкуса»

Еда| Премиум ДЕСЕРТация

Сейчас в эфире

Энсаймада. Дульче де лече

Вкусовая сенсорная система — Википедия

Вкусова́я сенсо́рная систе́ма — сенсорная система, при помощи которой воспринимаются вкусовые раздражения[1].

Вкусовые рецепторы, как и обонятельные рецепторы, являются хеморецепторами и предназначены для отслеживания химического состава окружающей среды. Вкус обычно рассматривают как контактное чувство: действующие молекулы находятся в растворе, который контактирует с рецептором, а обоняние, напротив, — дистантное чувство, и молекулы химических веществ доставляются к рецепторам потоками воздуха. Такая классификация очень условна как на клеточном, так и на молекулярном уровне (рецепторный механизм в случае как вкуса, так и обоняния может быть одним и тем же). Ещё труднее провести границу между вкусом и обонянием для водных животных, где стимулирующие вещества всегда растворены, а также ряда беспозвоночных (плоских и кольчатых червей, моллюсков)[2]. В данной статье подробно рассматриваются собственно вкусовые сенсорные системы насекомых и млекопитающих.

Как оговаривалось выше, выделение вкусовой системы у многих беспозвоночных довольно условно. Тем не менее, вкусовыми рецепторами у них можно считать хеморецепторы, задействованные в пищевом поведении. Например, плоские черви планарии обладают хеморецепторами, которые локализованы в голове и функционируют при питании. Чарльз Дарвин показал, что дождевые черви способны различать краснокочанную и обычную капусту, а также листья моркови и сельдерея. Наземные моллюски используют хеморецепторы для обнаружения пищи[3].

Схема строения сенсиллы насекомого

Исследование вкуса у насекомых началось с работ Минниха и Детье, которые изучали рефлекс вытягивания хоботка у бабочек и мясных мух в ответ на стимуляцию лапок питательными растворами. Позднее сходная хемочувствительность была показана в больших хеморецепторных волосках верхней губы[en] (лабеллума) хоботка мух Calliphora[en] и Phormia[en]. При стимуляции губа выдвигается вперёд так, что волоски соприкасаются с жидкостью и тестируют её. Оказалось, что одиночный лабеллярный рецептор сахара по-разному отвечает на разные сахара, а частота импульсации возрастает с увеличением концентрации сахара. У мясных мух на лабеллуме расположены четыре группы хеморецепторных волосков, которые чувствительны преимущественно к сахарам, катионам, анионам или воде соответственно. Кроме того, сенсиллы, реагирующие на сахара, способны реагировать на некоторые аминокислоты и жирные кислоты, а водные рецепторы ингибируются солями. У других насекомых имеются другие рецепторы, соответствующие их пищевым предпочтениям. Так, растительноядные насекомые и гусеницы имеют рецепторы, чувствительные к химическим веществам, содержащимся в растительной пище[4].

Хеморецепторные сенсиллы насекомых имеют одну или несколько пор, причём контактные (вкусовые) сенсиллы имеют, как правило, одну пору, а дистантные (обонятельные) имеют несколько пор для увеличения чувствительности. Вкусовые сенсиллы представлены волосками или выростами разной формы и размеров и обычно мультимодальны. Лабеллярные сенсиллы мухи Phormia содержат 4 хеморецепторные и одну механорецепторную клетку. Внешние сегменты дендритов хеморецепторных клеток проходят вдоль сенсиллы и оканчиваются непосредственно под порой, а аксоны этих клеток идут в подглоточный ганглий[5].

При стимуляции сенсиллы вкусовым раздражителем кончик наружного сегмента хеморецепторной клетки деполяризуется, и деполяризация электротонически распространяется вниз по наружному сегменту и достигает внутреннего сегмента. Деполяризация основания наружного сегмента распространяется к аксону хеморецепторной клетки, где и инициируется импульс. Строение хеморецепторной сенсиллы насекомых напоминает строение миелинизированного аксона позвоночных, однако вместо миелиновой обкладки усиление электротонического распространения тока по сенсилле обеспечивает кутикулярная оболочка, окружающая наружный сегмент[6].

Строение вкусовой почки

Органы вкуса млекопитающих представлены вкусовыми луковицами, или сосочками, которые расположены на слизистых оболочках языка, твёрдого нёба, а также глотки и надгортанника[7] и содержат рецепторы вкуса (хеморецепторы). Традиционно считалось, что система восприятия вкусовых ощущений у млекопитающих — четырёхкомпонентная, причём первичными вкусами являются сладкий, солёный, кислый и горький[8][9]. На рубеже XX—XXI вв. выявлен пятый тип рецепторов вкуса, отвечающий за восприятие «мясного» вкуса (умами)[10]. Предполагается, что в ходе эволюции высокая чувствительность к горечи развилась как средство избегать ядов (многие вещества, воспринимаемые как горькие, ядовиты), а к сладости — для детектирования высокоэнергетических продуктов.[11]

Вкусовые рецепторы млекопитающих находятся во вкусовых почках, представляющих собой видоизменённые эпителиальные клетки. В 2005 году было установлено, что одна чувствительная клетка экспрессирует только один тип рецепторов, а значит, чувствительная лишь к одному из пяти вкусов[12].

Рецептор сладкого вкуса, связавший молекулу глюкозы.

Рецепторы, реагирующие на сладкий и горький вкус, а также умами, метаботропные и связаны с G-белками. Например, у человека имеется свыше 30 типов рецепторов горького вкуса, но только один — для умами и один — для сладкого. Входящие сенсорные импульсы горького вкуса проводятся G-белком α-гастдуцином. Рецептор умами представляет собой метаботропный глутаматный рецептор (mGluR4[en]), стимуляция которого вызывает уменьшение концентрации цАМФ. Кислый вкус ощущается, когда присутствие ионов H+, характерное для кислой среды, ведёт к более частому закрыванию К+-каналов и тем самым деполяризует[en] чувствительную клетку. Солёный вкус обусловлен наличием катионов Na+, К+ и т. д., поскольку они, входя в чувствительную клетку по специфическим ионным каналам, деполяризуют клетку, однако присутствие анионов также играет свою роль[13][12]. Информация от чувствительных клеток собирается лицевым нервом (передние 2/3 языка), языкоглоточным нервом (задняя 1/3 языка и твёрдое нёбо) и блуждающим нервом (глотка и надгортанник), откуда она поступает в особый пучок в продолговатом мозге. Далее она поступает в таламус, а далее — в соответствующую зону коры больших полушарий[7].

Традиционно было принято считать, сладкий и солёный вкус воспринимаются преимущественно кончиком языка, кислый — его боками, горький — средней частью спинки языка[9]. Тем не менее, имеющиеся к настоящему моменту молекулярные и функциональные данные показывают, что все вкусовые рецепторы распределены по всей поверхности языка и отличаются лишь плотностью своего распределения[13]. Таким образом, никакой «карты языка» не существует, вопреки ошибочным популярным представлениям[14].

В некоторых источниках в качестве отдельного вкуса выделяют вкус воды. Показано, что смешанная ветвь лицевого нерва млекопитающих содержит волокна, реагирующие на попадание воды на язык. Однако субъективно «вкус» воды воспринимается по-разному в зависимости от того, какое вкусовое ощущение ему предшествовало. Так, после действия хинина или лимонной кислоты вкус воды оценивается как сладкий, а после NaCl или сахарозы — как горький. Поэтому, возможно, между рецепторами воды и вышеупомянутых вкусовых ощущений есть взаимодействие[15].

В 2015 году были опубликованы результаты исследования, показавшего, что вкус неэтерифицированных жирных кислот («масляный вкус») совершенно отличен от пяти других вкусов (правда, между этим вкусом и умами обнаружилось некоторое перекрывание). Короткоцепочечные жирные кислоты имеют вкус, сходный с кислым, однако при увеличении длины ацильной цепи вкус кислоты становится всё более «масляным»[16].

  1. ↑ Смит, 2013, с. 228.
  2. ↑ Смит, 2013, с. 228—229.
  3. ↑ Смит, 2013, с. 229.
  4. ↑ Смит, 2013, с. 229—230.
  5. ↑ Смит, 2013, с. 230.
  6. ↑ Смит, 2013, с. 231.
  7. 1 2 Ткаченко, 2009, с. 415.
  8. Воротников С. А. Информационные устройства робототехнических систем. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2005. — С. 307—322. — 384 с. — ISBN 5-7038-2207-6..
  9. 1 2 Медников, 1994, с. 368.
  10. Beauchamp G. K.  Sensory and receptor responses to umami: an overview of pioneering work // The American Journal of Clinical Nutrition. — 2009. — Vol. 90, № 3. — P. 723—727. — DOI:10.3945/ajcn.2009.27462E. — PMID 19571221. [исправить]
  11. ↑ Романов, 2014.
  12. 1 2 Campbell, 2011, p. 1102.
  13. 1 2 Зильбернагль, Деспопулос, 2013, с. 350.
  14. Chandrashekar J., Hoon M. A., Ryba N. J. P., Zuker C. S.  The receptors and cells for mammalian taste // Nature. — 2006. — Vol. 444, № 7117. — P. 288—294. — DOI:10.1038/nature05401. — PMID 17108952. [исправить]
  15. ↑ Смит, 2013, с. 241—242.
  16. Running C. A., Craig B. A., Mattes R. D. Oleogustus: The Unique Taste of Fat. (англ.) // Chemical senses. — 2015. — Vol. 40, no. 7. — P. 507—516. — DOI:10.1093/chemse/bjv036. — PMID 26142421. [исправить]
  • Зильбернагль С., Деспопулос А.  Наглядная физиология. — М.: БИНОМ. Лаборатория знаний, 2013. — 408 с. — ISBN 978-5-94774-385-2.
  • Медников Б. М.  Биология: формы и уровни жизни. — М.: Просвещение, 1994. — 415 с. — ISBN 5-09-004384-1.
  • Смит К. Ю. М. Биология сенсорных систем. — М.: БИНОМ. Лаборатория знаний, 2013. — 583 с. — ISBN 978-5-94774-194-0.
  • Ткаченко Б. И., Брин В. Б., Захаров Ю. М., Недоспасов В. О., Пятин В. Ф.  Физиология человека. Compendium / Под ред. Б. И. Ткаченко. — М.: ГЭОТАР-Медиа, 2009. — 496 с. — ISBN 978-5-9704-0964-0.
  • Campbell N. A., Reece J. B., Urry L. A. e. a.  Biology. 9th ed. — Benjamin Cummings, 2011. — 1263 p. — ISBN 978-0-321-55823-7.
  • Романов, Роман Александрович. Клеточные механизмы восприятия вкуса // Природа : журн.. — 2014. — № 8. — С. 3−10.

Анатомия вкуса

Вероника Викторовна Благутина,
кандидат химических наук
«Химия и жизнь» №10, 2010

Художник Н. Колпакова. Изображение: «Химия и жизнь»Художник Н. Колпакова. Изображение: «Химия и жизнь»

Изобретение нового блюда важнее для счастья
человечества, нежели открытие новой планеты.
Жан-Антельм Брийя-Саварен

Самая простая радость в нашей жизни — вкусно поесть. Но как же трудно объяснить с точки зрения науки что при этом происходит! Впрочем, физиология вкуса еще в самом начале своего пути. Так, например, рецепторы сладкого и горького были открыты только лет десять назад. Но их одних совсем недостаточно для того, чтобы объяснить все радости гурманства.

От языка до мозга

Сколько вкусов чувствует наш язык? Все знают сладкий вкус, кислый, соленый, горький. Сейчас к этим четырем основным, которые описал в ХIХ веке немецкий физиолог Адольф Фик, официально добавили еще и пятый — вкус умами (от японского слова «умаи» — вкусный, приятный). Этот вкус характерен для белковых продуктов: мяса, рыбы и бульонов на их основе. В попытке выяснить химическую основу этого вкуса японский химик, профессор Токийского императорского университета Кикунаэ Икеда проанализировал химический состав морской водоросли Laminariajaponica, основного ингредиента японских супов с выраженным вкусом умами. В 1908 году он опубликовал работу о глутаминовой кислоте, как носителе вкуса умами. Позднее Икеда запатентовал технологию получения глутамата натрия, и компания «Адзиномото» начала его производство. Тем не менее умами признали пятым фундаментальным вкусом только в 1980-х годах. Обсуждаются сегодня и новые вкусы, пока не входящие в классификацию: например, металлический вкус (цинк, железо), вкус кальция, лакричный, вкус жира, вкус чистой воды. Ранее считалось, что «жирный вкус» — это просто специфическая текстура и запах, но исследования на грызунах, проведенные японскими учеными в 1997 году, показали, что их вкусовая система распознает и липиды. (Подробнее об этом мы расскажем дальше.)

Рис. 1. На языке больше 5000 сосочков, в которых находятся вкусовые почки с рецепторами. Изображение: «Химия и жизнь»

Язык человека покрыт более 5000 сосочков разной формы (рис. 1). Грибовидные занимают в основном две передние трети языка и рассеяны по всей поверхности, желобовидные (чашевидные) расположены сзади, у корня языка, — они большие, их легко увидеть, листовидные — это тесно расположенные складки в боковой части языка. Каждый из сосочков содержит вкусовые почки. Немного вкусовых почек есть также в надгортаннике, задней стенке глотки и на мягком нёбе, но в основном они, конечно, сосредоточены на сосочках языка. Почки имеют свой специфический набор вкусовых рецепторов. Так, на кончике языка больше рецепторов к сладкому — он чувствует его гораздо лучше, края языка лучше ощущают кислое и соленое, а его основание — горькое. В общей сложности у нас во рту примерно 10 000 вкусовых почек, и благодаря им мы чувствуем вкус.

Каждая вкусовая почка (рис. 2) содержит несколько дюжин вкусовых клеток. На их поверхности есть реснички, на которых и локализована молекулярная машина, обеспечивающая распознавание, усиление и преобразование вкусовых сигналов. Собственно сама вкусовая почка не достигает поверхности слизистой языка — в полость рта выходит только вкусовая пора. Растворенные в слюне вещества диффундируют через пору в наполненное жидкостью пространство над вкусовой почкой, и там они соприкасаются с ресничками — наружными частями вкусовых клеток. На поверхности ресничек находятся специфические рецепторы, которые избирательно связывают молекулы, растворенные в слюне, переходят в активное состояние и запускают каскад биохимических реакций во вкусовой клетке. В результате последняя высвобождает нейротрансмиттер, он стимулирует вкусовой нерв, и по нервным волокнам в мозг уходят электрические импульсы, несущие информацию об интенсивности вкусового сигнала. Рецепторные клетки обновляются примерно каждые десять дней, поэтому если обжечь язык, то вкус теряется только на время.

Рис. 2. Вкусовая почка.  Изображение: «Химия и жизнь»

Молекула вещества, вызывающего определенное вкусовое ощущение, может связаться только со своим рецептором. Если такого рецептора нет или он или сопряженные с ним биохимические каскады реакций не работают, то вещество и не вызовет вкусового ощущения. Существенный прогресс в понимании молекулярных механизмов вкуса был достигнут относительно недавно. Так, горькое, сладкое и умами мы распознаем благодаря рецепторам, открытым в 1999 — 2001 годах. Все они относятся к обширному семейству GPCR (G protein-coupled receptors), сопряженных с G-белками. Эти G-белки находятся внутри клетки, возбуждаются при взаимодействии с активными рецепторами и запускают все последующие реакции. Кстати, помимо вкусовых веществ рецепторы типа GPCR могут распознавать гормоны, нейромедиаторы, пахучие вещества, феромоны — словом, они похожи на антенны, принимающие самые разнообразные сигналы.

Сегодня известно, что рецептор сладких веществ — это димер из двух рецепторных белков T1R2 и T1R3, за вкус умами отвечает димер T1R1-T1R3 (у глутамата есть и другие рецепторы, причем некоторые из них расположены в желудке, иннервируются блуждающим нервом и отвечают за чувство удовольствия от пищи), а вот ощущению горечи мы обязаны существованию около тридцати рецепторов группы T2R. Горький вкус — это сигнал опасности, поскольку такой вкус имеют большинство ядовитых веществ.

Видимо, по этой причине «горьких» рецепторов больше: умение вовремя различить опасность может быть вопросом жизни и смерти. Некоторые молекулы, такие, как сахарин, могут активировать как пару сладких рецепторов T1R2-T1R3, так и горькие T2R (в частности, hTAS2R43 у человека), поэтому сахарин на языке кажется одновременно сладким и горьким. Это позволяет нам отличить его от сахарозы, которая активирует только T1R2-T1R3.

Принципиально иные механизмы лежат в основе формирования ощущений кислого и соленого. Химическое и физиологическое определения «кислого», по сути, совпадают: за него отвечает повышенная концентрация ионов Н+ в анализируемом растворе. Пищевая соль — это, как известно, хлорид натрия. Когда происходит изменение концентрации этих ионов — носителей кислого и соленого вкусов, — тут же реагируют соответствующие ионные каналы, то есть трансмембранные белки, избирательно пропускающие ионы в клетку. Рецепторы кислого — это фактически ионные каналы, проницаемые для катионов, которые активируются внеклеточными протонами. Рецепторы соленого — это натриевые каналы, поток ионов через которые возрастает при увеличении концентрации солей натрия во вкусовой поре. Впрочем, ионы калия и лития тоже ощущаются как «соленые», но соответствующие рецепторы однозначно пока не найдены.

Почему при насморке теряется вкус? Воздух с трудом проходит в верхнюю часть носовых ходов, где расположены обонятельные клетки. Временно пропадает обоняние, поэтому мы плохо чувствуем и вкус тоже, поскольку эти два ощущения теснейшим образом связаны (причем обоняние тем важнее, чем богаче пища ароматами). Пахучие молекулы высвобождаются во рту, когда мы пережевываем пищу, поднимаются вверх по носовым ходам и там распознаются обонятельными клетками. Насколько важно обоняние в восприятии вкуса, можно понять, зажав себе нос. Кофе, например, станет просто горьким. Кстати, люди, которые жалуются на потерю вкуса, на самом деле в основном имеют проблемы с обонянием. У человека примерно 350 типов обонятельных рецепторов, и этого достаточно, чтобы распознать огромное множество запахов. Ведь каждый аромат состоит из большого числа компонентов, поэтому задействуется сразу много рецепторов. Как только пахучие молекулы связываются с обонятельными рецепторами, это запускает цепочку реакций в нервных окончаниях, и формируется сигнал, который также отправляется в мозг.

Теперь о температурных рецепторах, которые также очень важны. Почему мята дает ощущение свежести, а перец жжет язык? Ментол, входящий в мяту, активирует рецептор TRPM8. Это катионный канал, открытый в 2002 году, начинает работать при падении температуры ниже 37оС — то есть он отвечает за формирование ощущение холода. Ментол снижает температурный порог активации TRPM8, поэтому, когда он попадает в рот, ощущение холода возникает при неизменной температуре окружающей среды. Капсаицин, один из компонентов жгучего перца, наоборот активирует рецепторы тепла TRPV1 — ионные каналы, близкие по структуре TRPM8. Но в отличие от холодовых, TRPV1 активируются при повышении температуры выше 37оС. Именно поэтому капсаицин вызывает ощущение жгучести. Пикантные вкусы других пряностей — корицы, горчицы, тмина — также распознаются температурными рецепторами. Кстати, температура пищи имеет огромное значение — вкус выражен максимально, когда она равна или чуть выше температуры полости рта.

Как ни странно, зубы тоже участвуют в восприятии вкуса. О текстуре пищи нам сообщают датчики давления, расположенные вокруг корней зубов. В этом принимают участие и жевательные мускулы, которые «оценивают» твердость пищи. Доказано, что, когда во рту много зубов с удаленными нервами, ощущение вкуса меняется.

Вообще вкус — это, как говорят медики, мультимодальное ощущение. Должна воедино свестись следующая информация: от химических избирательных вкусовых рецепторов, тепловых рецепторов, данные от механических датчиков зубов и жевательных мускулов, а также обонятельных рецепторов, на которые действуют летучие компоненты пищи.

Примерно за 150 миллисекунд первая информация о вкусовой стимуляции доходит до центральной коры головного мозга. Доставку осуществляют четыре нерва. Лицевой нерв передает сигналы, приходящие от вкусовых почек, которые расположены на передней части языка и на нёбе, тройничный нерв передает информацию о текстуре и температуре в той же зоне, языкоглоточный нерв переправляет вкусовую информацию с задней трети языка. Информацию из горла и надгортанника передает блуждающий нерв. Потом сигналы проходят через продолговатый мозг и оказываются в таламусе. Именно там вкусовые сигналы соединяются с обонятельными и вместе уходят во вкусовую зону коры головного мозга (рис. 3).

Рис. 3. Распознавание вкуса — это комплексный процесс. Вся информация от вкусовых рецепторов, термических, обонятельных и данные от механических датчиков, поступает по нервным волокнам в мозг. Мы практически мгновенно понимаем, что едим. Изображение: «Химия и жизнь»

Вся информация о продукте обрабатывается мозгом одновременно. Например, когда во рту клубника, это будут сладкий вкус, клубничный запах, сочная с косточками консистенция. Сигналы от органов чувств, обработанные во многих частях коры головного мозга, смешиваются и дают комплексную картину. Через секунду мы уже понимаем, что едим. Причем общая картина создается нелинейным сложением составляющих. Например, кислотность лимонного сока можно замаскировать сахаром, и он будет казаться не таким кислым, хотя содержание протонов в нем не уменьшится.

Маленькие и большие

У маленьких детей больше вкусовых почек, поэтому они так обостренно все воспринимают и настолько разборчивы в еде. То, что в детстве казалось горьким и противным, легко проглатывается с возрастом. У пожилых людей многие вкусовые почки отмирают, поэтому еда им часто кажется пресной. Существует эффект привыкания к вкусу — со временем острота ощущения снижается. Причем привыкание к сладкому и соленому развивается быстрее, чем к горькому и кислому. То есть люди, которые привыкли сильно солить или подслащивать пищу, не чувствуют соли и сахара. Есть и другие интересные эффекты. Например, привыкание к горькому повышает чувствительность к кислому и соленому, а адаптация к сладкому обостряет восприятие всех других вкусов.

Ребенок учится различать запахи и вкус уже в утробе матери. Проглатывая и вдыхая амниотическую жидкость, эмбрион осваивает всю палитру запахов и вкусов, которые воспринимает мать. И уже тогда формирует пристрастия, с которыми придет в этот мир. Например, беременным женщинам за десять дней до родов предлагали конфеты с анисом, а потом смотрели, как вели себя новорожденные в первые четыре дня жизни. Те, чьи мамы ели анисовые конфетки, явно различали этот запах и поворачивали в его сторону голову. По другим исследованиям, тот же эффект наблюдается с чесноком, морковью или алкоголем.

Конечно, вкусовые пристрастия сильно зависят от семейных традиций питания, от обычаев страны, в которой вырос человек. В Африке и Азии кузнечики, муравьи и прочие насекомые — вкусная и питательная еда, а у европейца она вызывает рвотный рефлекс. Так или иначе, природа нам оставила немного простора для выбора: как именно вы будете ощущать тот или иной вкус, в значительной мере предопределено генетически.

Гены диктуют меню

Нам иногда кажется, будто мы сами выбираем, какую пищу любить, в крайнем случае — что мы едим то, к чему нас приучили родители. Но ученые все больше склоняются к тому, что выбор за нас делают гены. Ведь люди ощущают вкус одного и того же вещества по-разному, и пороги вкусовой чувствительности у разных людей также сильно отличаются — вплоть до «вкусовой слепоты» к отдельным веществам. Сегодня исследователи всерьез задались вопросом: действительно ли некоторые люди запрограммированы есть картофель фри и набирать вес, пока другие с удовольствием едят вареную картошку? Особенно это волнует США, которые столкнулись с настоящей эпидемией ожирения.

Впервые вопрос о генетической предопределенности обоняния и вкуса был поднят в 1931 году, когда химик фирмы «Дюпон» Артур Фокс синтезировал пахучую молекулу фенилтиокарбамида (ФТК). Его коллега заметил острый запах, который исходил от этого вещества, к большому удивлению Фокса, который ничего не чувствовал. Он также решил, что вещество безвкусно, а тот же коллега нашел его очень горьким. Фокс проверил ФТК на всех членах своей семьи — никто не чувствовал запаха…

Эта публикация 1931 года породила целый ряд исследований чувствительности — не только к ФТК, но и вообще к горьким веществам. Нечувствительными к горечи фенилтиокарбамида оказались примерно 50% европейцев, но лишь 30% азиатов и 1,4% индейцев Амазонии. Ген, ответственный за это, обнаружили только в 2003 году. Оказалось, что он кодирует рецепторный белок вкусовых клеток. У разных индивидов этот ген существует в разных версиях, и каждая из них кодирует немного другой белок-рецептор — соответственно фенилтиокарбамид может взаимодействовать с ним хорошо, плохо или вообще никак. Поэтому разные люди различают горечь в различной степени. С тех пор обнаружено около 30 генов, кодирующих распознавание горького вкуса.

Как это влияет на наши вкусовые пристрастия? Многие пытаются ответить на этот вопрос. Вроде бы известно, что те, кто различает горький вкус ФТК, испытывают отвращение к брокколи и брюссельской капусте. Эти овощи содержат молекулы, структура которых похожа на ФТК. Профессор Адам Древновски из Мичиганского университета в 1995 году сформировал три группы людей по их способности распознавать в растворе близкое к ФТК, но менее токсичное соединение. Эти же группы проверили на вкусовые пристрастия. Те, кто чувствовал уже очень маленькие концентрации тестового вещества, находили кофе и сахарин слишком горькими. Обычная сахароза (сахар, который получают из тростника и свеклы) казалась им более сладкой, чем другим. И жгучий перец жег гораздо сильнее.

По-прежнему спорным остается вопрос о вкусе жира. Долгое время считали, что жир мы распознаем с помощью обоняния, поскольку липиды выделяют пахучие молекулы, а также благодаря определенной текстуре. Специальные вкусовые рецепторы на жир никто даже не искал. Эти представления поколебала в 1997 году исследовательская группа Тору Фусики из университета Киото. Из эксперимента было известно, что крысята предпочитали бутылочку с едой, содержащую жиры. Чтобы проверить, связано ли это с консистенцией, японские биологи предложили грызунам без обоняния два раствора — один с липидами, а другой с похожей консистенцией, сымитированной благодаря загустителю. Крысята безошибочно выбрали раствор с липидами — видимо, руководствуясь вкусом.

В самом деле, выяснилось, что язык грызунов может распознать вкус жира с помощью специального рецептора — гликопротеина CD36 (транспортера жирных кислот). Французские исследователи под руководством Филлипа Бенара доказали, что, когда ген, кодирующий CD36, заблокирован, животное перестает отдавать предпочтение жирной пище, а в желудочно-кишечном тракте при попадании жира на язык не происходит изменения секреции. При этом животные по-прежнему предпочитали сладкое и избегали горькое. Значит, был найден специфический рецептор именно на жир.

Но человек — не грызун. Присутствие в нашем организме транспортного белка CD36 доказано. Он переносит жирные кислоты в мозг, сердце, вырабатывается в желудочно-кишечном тракте. Но есть ли он на языке? Две лаборатории, американская и немецкая, пытались прояснить этот вопрос, однако публикаций пока нет. Исследования на афроамериканцах, у которых обнаружено большое разнообразие гена, кодирующего белок CD36, как будто показывают, что способность распознавать жир в пище действительно связана с некоторыми модификациями конкретного гена. Есть надежда, что, когда будет найден ответ на вопрос «может ли наш язык чувствовать вкус жира», у врачей появятся новые возможности для лечения ожирения.

Животные-гурманы?

В XIX веке знаменитый французский гастроном и автор широко цитируемой книги «Физиология вкуса» Жан-Антельм Брийя-Саварен настаивал на том, что только человек разумный испытывает удовольствие от еды, которая вообще-то нужна просто для поддержания жизни. Действительно, современные исследования показали, что животные воспринимают вкус иначе, чем мы. Но так ли сильно отличаются вкусовые ощущения у людей и других представителей отряда приматов?

Опыты проводили на 30 видах обезьян, которым давали пробовать чистую воду и растворы с разными вкусами и разными концентрациями: сладкие, соленые, кислые, горькие. Оказалось, что их вкусовая чувствительность сильно зависит от того, кто и что пробует. Приматы ощущают, как и мы, сладкое, соленое, кислое и горькое. Обезьяна отличает фруктозу плода от сахарозы свеклы, а также танины коры дерева. Но, к примеру, уистити — порода обезьян, которая питается листьями и зеленью, более чувствительна к алкалоидам и хинину в коре деревьев, чем фруктоядные приматы Южной Америки.

Вместе с американскими коллегами из университета штата Висконсин, французские исследователи подтвердили это еще и электрофизиологическими экспериментами и свели воедино картину, полученную на разных видах обезьян. В электрофизиологических экспериментах регистрировали электрическую активность волокон одного из вкусовых нервов — в зависимости от того, какой продукт ест животное. Когда наблюдалась электрическая активность, это значило, что животное ощущает вкус данной пищи.

А как обстоит дело у человека? Чтобы определить пороги чувствительности, добровольцам вслепую давали пробовать сначала очень разбавленные, а потом все более концентрированные растворы, пока они не формулировали четко, каков же вкус раствора. Человеческое «дерево вкуса» в целом похоже на те, что получили для обезьян. У человека так же далеко разнесены в противоположные стороны вкусовые ощущения от того, что приносит энергию организму (сахара), и того, что может навредить (алкалоиды, танин). Бывает и корреляция между субстанциями одного типа. Тот, кто очень чувствителен к сахарозе, имеет шансы быть также чувствительным к фруктозе. Но зато нет никакой корреляции между чувствительностью к хинину и танину, а некто, чувствительный к фруктозе, не обязательно чувствителен к танину.

Коль скоро у нас и обезьян так похож механизм вкуса, значит ли это, что мы стоим совсем рядом на эволюционном дереве? Согласно наиболее правдоподобной версии, к концу палеозоя и появлению первых земных существ эволюция растений и животных шла параллельно. Растения должны были как-то сопротивляться активному ультрафиолетовому излучению молодого солнца, поэтому только те экземпляры, которые имели достаточно полифенолов для защиты, смогли выжить на суше. Эти же соединения защищали растения от травоядных животных, поскольку они токсичны и затрудняют переваривание.

У позвоночных в ходе эволюции развивалась способность различать горький или вяжущий вкус. Именно эти вкусы окружали приматов, когда они появились в кайнозойскую эру (эоцен), а затем и первых людей. Появление растений с цветами, которые превращались в плоды со сладкой мякотью, сыграло большую роль в эволюции вкуса. Приматы и плодовые растения эволюционировали совместно: приматы поедали сладкие фрукты и рассеивали их семена, способствуя росту деревьев и лиан в тропических лесах. А вот способность распознавать вкус соли (особенно поваренной) едва ли могла возникнуть в ходе коэволюции с растениями. Возможно, она пришла от водных позвоночных, а приматы просто унаследовали ее.

Интересно, приматы при выборе еды руководствуются только питательной ценностью и вкусом? Нет, оказывается, они могут поедать растения и с лечебной целью. Майкл Хаффман из Киотского университета в 1987 году на западе Танзании наблюдал за шимпанзе, у которого были проблемы с желудком. Обезьяна поедала стебли горького растения Vernonia amygdalina (вернония), которые шимпанзе обычно не едят. Выяснилось, что побеги дерева содержат вещества, помогающие против малярии, дизентерии и шистосомоза, а также обладающие антибактериальными свойствами. Наблюдение за поведением диких шимпанзе дало ученым пищу для размышлений: были созданы новые растительные лекарственные препараты.

В общем, вкус не сильно изменился в процессе эволюции. И приматам, и людям вкус сладкого приятен — в их организмах идет выработка эндорфинов. Поэтому, возможно, великий французский кулинар был не совсем прав — приматы тоже могут быть гурманами.

По материалам журнала
«La Recherche», №7-8, 2010

Молекулярные механизмы восприятия вкуса и вещества со вкусом кокуми

FOOD Chemistry — одна из самых сложных кулинарных дисциплин. Однако эти знания необходимы шефу и в любой из фундаментальных кулинарных школ эту науку преподают на протяжении всего периода обучения. Мы предлагаем вам цикл статей разных авторов и начнем, пожалуй, с понимания восприятия вкуса.

Несмотря на то, что понимание молекулярной основы восприятия вкуса давно воспринималось как необходимость с целью большего количества практических применений, только в последнее время научные открытия в этой области начали заменять теории с устоявшимися фактами и принципами. Большая часть последних достижений в понимании восприятия вкуса была сделана с использованием методов, характерных для современных исследований в молекулярной биологии.

Мощная движущая сила для проведения фундаментальных исследований механизмов восприятия вкуса обеспечивается стремлением более широко использовать структурно-активные особенности молекул (например, определенная структурная особенность дает предсказуемый аромат или вкус), чтобы предопределять развитие более полезных и эффективных вкусовых соединений (например, интенсивных подсластителей). Кроме того, существует высокий спрос на вещества, маскирующие или удаляющие неприятные вкусовые качества некоторых пищевых ингредиентов (например, производные соевого белка), а особенно нежелательную горечь, присущую некоторым фармацевтическим препаратам и нутрицевтическим ингредиентам.

Специальные клетки обонятельного эпителия в носовой полости, имеющие способность обнаруживать следы летучих пахучих веществ, дают возможность ощущать почти неограниченные вариации интенсивности и качества запахов и вкусов. Вкусовые рецепторы, расположенные на языке и задней части ротовой полости позволяют человеку ощущать сладость, кисловатость, соленость, горечь, и умами – вкус белка, и эти ощущения дополняют вкусовые качества пищи. В целом, общий процесс восприятия запаха и вкусовых ощущений на молекулярном уровне включает в себя три последовательных стадии, которые, так или иначе, достигают высшей точки в чувственном опыте дегустатора. Речь идет о приеме, преобразовании и нейронной обработке или кодировании информации электрических импульсов.

Для запахов и некоторых вкусов (сладкого, горького, и умами), начальное восприятие предполагает избирательное связывание (считается, что оно соответствует структурной концептуальной модели «замка и ключа») молекулы аромата со специфическим белком-рецептором в мембране соответствующей рецепторной клетки.

Когда происходит связывание молекулы аромата с белком-рецептором, с помощью одного из нескольких очень специфических каскадов биохимических реакций происходит преобразование химической энергии в электрическую.

Именно такое связывание между белком-рецептором и молекулой аромата стимулирует сопряженный с G-белком рецептор активировать ферментативные реакции и получить продукты каскада реакций (например, циклический АМФ или инозитолтрифосфат), которые взаимодействуют с ионными каналами Na+ или Са2+ в мембране клетки-рецептора и открывают их. Как результат, внезапный поток заряженных ионов, проходящий через мембрану клетки-рецептора, вызывает деполяризацию клетки, и производит уникальную серию электрических зарядов (потенциал действия или нервные импульсы), которые отражают количество аромата, стимулирующего клетку, и предоставляют информацию о виде молекулы аромата. Сведения о критических процессах, кодирующих электрическую информацию, в данное время чисто теоретические, но данные генетических и физиологических исследований подтверждают положение о том, что такие процессы достигаются за счет создания пространственных карт (отличие скорости и интенсивности срабатывания нейронов) в обонятельной луковице и других структурах мозга.

Некоторые вкусовые молекулы обладают уникальными органолептическими свойствами, например, тепло или жгучесть, охлаждение и покалывание

События на молекулярном уровне, участвующие в восприятии кислых (H+) и соленых (Na+) вкусовых ионов, отличаются как от запахов, так и от сладкого, горького, и вкуса умами, а также друг от друга. Однако, как кислые, так и соленые ионы непосредственно взаимодействуют с ионными каналами в мембранах вкусовых клеток-рецепторов. В случае с кислым вкусом, ионы Н+ связываются непосредственно с ионными каналами, вызывая их закрытие для потоков ионов Nа+, что в свою очередь приводит к деполяризации мембраны и нервному импульсу. Что касается восприятия солености, то оно инициируется прямым входом ионов Na+ из внешней среды в клетки вкусовых рецепторов, так как ионные каналы проницаемы для катиона соли (Na+). Таким образом, когда ионы Na+ проникают в клетки рецепторов и изменяют электрическое напряжение на мембране клетки, клетки деполяризуются и генерируют нервный импульс в ответ на присутствие соли (NaCl) во внешней среде.

Некоторые вкусовые молекулы обладают уникальными органолептическими свойствами, например, тепло или жгучесть, охлаждение и покалывание, что в значительной степени делает особенным вкус некоторых продуктов питания и напитков. Поскольку эти ощущения возникают из-за влияния на определенные нервные волокна, и для их возникновения не требуется участия специфических клеток рецепторов (т.е. вкусовых или обонятельных), в прошлом их считали неспецифическими вкусовыми ощущениями. Такие ощущения в тканях полости рта и носа появляются точно также как и в кожной хемосенсорной системе (т.е. чувства раздражения, боли, тепла, холода и т.д.). Однако, чтобы отличать эти, связанные с вкусовыми, ощущения, исходящие от иннервирующих систем ротовой и носовой полостей (т.е. тройничной, языкоглоточной и блуждающей), создан и используется новый термин – «общее химическое чувство», коллективно обозначающий эти вкусовые ощущения.

Другие неспецифические, химически индуцированные, вкусовые ощущения (чувство полноты вкуса и многокомпонентности пищи и т.д.), по-видимому, воспринимаются тригеминальной нервной системой, но составляющие, вызывающие такие чувства не достаточно изучены и механизмы восприятия не до конца понятны.

Японские исследователи ввели отдельный термин – кокуми

Как уже упоминалось, поваренная соль (NaСl) обеспечивает глубокие усиливающие и модифицирующие вкусовые эффекты при восприятии вкуса продуктов питания. Хотя соль воспринимается исключительно специализированными вкусовыми клетками, многие считают, что она также может обеспечивать усиление вкуса, изменяя функции других клеток основных вкусовых рецепторов или другие ощущения, исходящие от других нейронных систем (например, тройничной, и т.д.) в полости рта. Таким образом, соль, вероятно, обладает некоторыми свойствами, сходными с другими веществами, улучшающими общий вкус, модифицирующие функции которых остаются пока плохо изученными.

Японские исследователи ввели отдельный термин – кокуми – чтобы ссылаться, по крайней мере, на часть химических веществ, не вызывающих реакции схожей с четырьмя основными вкусами и вкусом умами, но повышающих вкусовые качества еды путем обеспечения ощущений, какие лучше всего описать как полнота вкуса, многокомпонентность, целостность и плотность. Например, главными веществами характерных летучих ароматических соединений чеснока и лука является S-замещенные цистеина сульфоксидные аминокислоты. Эти соединения легко растворимы в воде, и они обладают сильными свойствами кокуми, которые отчетливо влияют на вкусовые качества пищи. Таким образом, хотя вкус продуктов питания, содержащих чеснок (например, макаронные изделия, соусы жареное мясо и т.д.), может не обладать легко отличимыми нотками аромата чеснока, вкус таких продуктов воспринимается как многокомпонентный, полный и аппетитный из-за наличия S-(2-пропенил) -L-цистеин сульфоксида.

В данное время используются ряд других терминов для описания вкусового разнообразия, связанного с вкусом кокуми, а именно: бархатистость, насыщенность, кремообразность и сочность.

Хорошо растворимые в воде вещества, придающие продуктам питания вкус кокуми пока не многочисленны, но есть еще один цистеин-содержащий пептид – глутатион, который также является веществом, обеспечивающим такой вкус. Соответственно выше сказанному, янтарная кислота (и ее растворимые соли) имеет отчетливый вкус бульона в дополнение к кислым качествам. Хотя вкус янтарной кислоты не классифицирован пока как кокуми, это вещество используется в коммерческих целях для создания ощущения многокомпонентного бульона вместе с солеными продуктами питания, особенно в соусах для мяса.

В данное время используются ряд других терминов для описания вкусового разнообразия, связанного с вкусом кокуми, а именно: бархатистость, насыщенность, кремообразность и сочность. Целый ряд природных и синтетических веществ обладают способностью обеспечивать такие оттенки вкусов, а также, среди некоторых из этих веществ можно встретить некоторые структурные сходства. Разнообразные сходные с ванилином вкусы являются одними из наиболее популярных вкусов во всем мире, и ароматы ванилина и этилванилина воспринимаются большинством как наиболее желательные. В дополнение к ароматам, вещества сходные с ванилином также придают пикантные вкусовые эффекты, характеризующиеся вкусовыми ощущениями повышенной эластичности, насыщенности и бархатистости, особенно в сладких жиросодержащих продуктах, таких как мороженое.

Точно так же, мальтол и этилмальтол широко использовались в качестве коммерческих вкусовых добавок для сладких товаров продуктов, содержащих фрукты. Хотя оба эти вещества обладают приятным вкусом жжёной карамели при высокой концентрации, они часто используются для придания мягкого, бархатистого вкуса сладким товарам, фруктовым сокам и продуктам в относительно низкой концентрации (50 к миллиону), при которой карамельные нотки неразличимы. Этилмальтол более эффективный подсластитель, чем мальтол, но мальтол до сих пор употребляется, если нужна в двое более низкая пороговая концентрация обнаружения для сахарозы.

Недавние исследования показали, что некоторые алкилфенолы, присутствующие в природе в молоке и мясе жвачных животных, способствуют возникновению ощущения обволакивания полости рта, усиления насыщенности и сочности при очень низких концентрациях (мг/г). Замена m-алкила на ароматическом кольце среди членов этой группы обеспечивает наиболее сильный модифицирующий вкус эффект, а m-крезол и m-(п)-пропилфенол являются наиболее важными в продуктах и ингредиентах полученных из продукции жвачных животных.

По материалам книги  «Fennema’s Food Chemistry, Fourth Edition»

Вкус — Википедия

Вкус в физиологии — один из видов хеморецепции; ощущение, возникающее при действии различных веществ преимущественно на рецепторы вкуса (расположенные на вкусовых луковицах языка, а также задней стенки глотки, мягкого неба, миндалины, надгортанника).

Информация от рецепторов вкуса передаётся по афферентным волокнам лицевого, языкоглоточного и блуждающего черепных нервов к ядру одиночного тракта продолговатого мозга, затем переключение происходит в ядрах тала́муса и далее в постцентральную извилину и островок (лат. insula) коры больших полушарий, где формируются вкусовые ощущения[1]. По другим сведениям, корковый конец вкусовой системы расположен в парагиппокампа́льной извилине (лат. gyrus parahippocampalis) (устар. крючковая извилина, лат. gyrus uncinatus) и в гиппока́мпе (лат. hippocampus)[2][3]. Кроме сладкого, горького, кислого, солёного вкуса современные люди в разных странах выделяют также умами, терпкий, жгучий, мятный, щелочной, металлический и др. вкусы.

У человека ощущение вкуса развивается при непосредственном участии ветвей лицевого и языкоглоточного нервов, которые обеспечивают вкусовую чувствительность на передних 2/3 и задней 1/3 языка соответственно.

Сладкие и горькие вещества вызывают обычно только ощущение вкуса, тогда как солёный, кислый (pH<7) и щелочной (pH>7 некоторых сильнодействующих веществ вызывают одновременное повреждение слизистых оболочек и болезненное ощущение — жжение, царапанье и т. п.

К собственно вкусовым ощущениям обычно примешиваются осязательные/тактильные ощущения (отсюда ощущения вяжущий, терпкий, острый, жгучий) на языке. Огромную роль в формировании вкуса (в его бытовом понимании) играют обонятельные ощущения, обусловливаемые запахом летучих веществ — ЛАВ. Можно сказать, что «аромат» пищи складывается из одновременных ощущений вкуса, запаха, а также тепловых и тактильных (через тройничный нерв). Вкус воспринимается, главным образом, корнем и верхней поверхностью задней части языка, а также его краями и кончиком.

Видимо, традиционно в европейских странах выделяли 4 «основных вкуса». У Даля, например, мы находим поговорки, свидетельствующие о языковом смешении понятий «горький», «терпкий», «кислый» в XIX веке.

В XX веке, в связи с расширением культурного обмена и влияния выходцев из Юго-Восточной Азии в Европе и Америке стали признавать вкус «умами» (ощущение от глутамата натрия). Признание этого вкуса можно связать с развитием сети китайских ресторанов, в которых использовались такие традиционные для стран Юго-Восточной Азии продукты, как ферментированный соевый или рыбный соус, мясо и др., а позже — синтетический глутамат натрия и т. п. (см. ниже).

Однако на Востоке издавна выделяют 6 вкусов, в том числе «жгучий», что вполне понятно и нашим соотечественникам, легко различающим горький (хина, горький огурец) и «горький» — жгучий перец, редька, горчица.

Древнекитайская философская модель мира — Пять элементов включала 5 вкусовых элементов: горькое, солёное, кислое, сладкое и горячее.

В ноябре 2005 французские исследователи показали, что крысы различают также «жирный» вкус[4].

Количество типов независимых рецепторов вкуса в настоящее время точно не установлено. 4 «основных» вкуса — социокультурный архаизм европейской культуры, 5 основных вкусов — культуры государств Юго-Восточной Азии. Исследователи из Университета Орегона предложили включить в классификацию шестой вкус, крахмальный[5][6].

Можно ожидать, что интенсивное развитие современной науки скоро позволит определить специфические характеристики и механизмы работы вкусовых рецепторов, а число признаваемых «базовых» вкусов будет только увеличиваться. Заметим, что в терминологии профессиональных дегустаторов (пищевых продуктов, чая, кофе, вина) число используемых базовых вкусов существенно больше, но эти термины в своём большинстве отностятся скорее к аромату, нежели собственно ко вкусу.

Предполагается, что существуют и другие виды рецепторов, например рецепторов, реагирующих на жирные кислоты, например, на линоленовую кислоту.[7][8][9]

Кислое[править | править код]

Кислый вкус однозначно ассоциируется с величиной pH жидкости. Механизм восприятия подобен восприятию солёного. Ионы оксония (преимущественно H3O+) возникают при диссоциации кислот. Так как величина pH слюны человека близка к нейтральному значению (рН=7), действие сильных кислот и кислот средней силы вызывает ощущение чисто-кислого вкуса. Однако некоторые слабые органические кислоты и гидролизующиеся ионы (алюминий) могут вызывать и ощущение терпкости (вяжущий вкус).

Сладкое[править | править код]

Сладость обычно ассоциируется с присутствием сахаров, но то же ощущение возникает от глицерина, некоторых белковых веществ, аминокислот. Одним из химических носителей «сладкого» являются гидроксо-группы в больших органических молекулах — сахара, а также полиолы — сорбит, ксилит. Детекторы сладкого — G-белки, расположенные во вкусовых почках.

Горькое[править | править код]

Горечь, как и сладость, воспринимается посредством G-белков. Исторически горький вкус ассоциировался с неприятным ощущением, и, возможно — с опасностью некоторых растительных продуктов для здоровья. Действительно, большинство растительных алкалоидов одновременно токсичны и горьки, и эволюционная биология имеет основания к такому заключению.

Солёное[править | править код]

Его стандартный носитель — хлорид натрия (очень близка к этому веществу по составу поваренная соль) и хлорид калия. Он детектируется рецепторами ионных каналов на языке, изменяя потенциал действия. Одновременно воспринимаемые солёный и кислый вкус сильно смешиваются, затрудняя понимание — какой из факторов сильнее.

«Пятый вкус», традиционно используемый в японской культуре, в других странах востока. Умами — название вкусового ощущения, производимого свободными аминокислотами, в частности глутаминовой, которые можно найти в ферментированной и выдержанной пище, например сырах пармезан и рокфор, в соевом и рыбном соусах. Также они содержатся в большом количестве неферментированных продуктов, например грецких орехах, винограде, брокколи, помидорах, грибах и, в меньшем количестве, в мясе.

Жгучий вкус[править | править код]

Жгучий вкус не относят к числу основных вкусов, так как до настоящего времени не обнаружены соответствующие вкусовые рецепторы. Он связан с веществами, стимулирующими «тепловые» рецепторы (этанол, капсаицин) — они возбуждают ветви тройничного нерва и вносят свой вклад в «чисто вкусовое» ощущение.

Терпкое[править | править код]

Это ощущение («вяжущий вкус») связано с рецепцией дубильных веществ (таннины в чае, в ягодах терна и др.). Механизм его возникновения объясняют связыванием таннинов с белками, богатыми пролином.[10]

Жирное[править | править код]

Человек, несомненно, воспринимает «жирный» вкус — но это ощущение не так чётко выражено, как обычно выделяемая стандартная тетрада «сладкий — кислый — горький — солёный».

Металлический привкус[править | править код]

Металлический привкус характерен для свежей (несвернувшейся) крови, а также обычно чувствуется у пищи, которая соприкасалась с окисленными металлами (ложки, вилки, банки). Особенно сильный металлический привкус наблюдается при контакте с медными сплавами — латунью, мельхиором и др., поэтому столовые предметы из мельхиора и нейзильбера покрывают тонким слоем серебра.

Это ощущение может служить признаком некоторых заболеваний; отравлений металлами (например, при литейной лихорадке) или пестицидами, действия некоторых лекарственных средств, например метронидазола и др.

Металлический вкус во рту обычно также возникает во время проведения процедуры электрофореза.

Дисгевзия возникает по разным причинам — беременность, сахарный диабет, заболевания желудочно-кишечного тракта или ротовой полости, анемия, гипотиреоз и др.[11].

Выделяют агевзию — потерю одного из основных вкусовых ощущений, гипогевзию — ослабление одного из ощущений, парагевзию, когда вместо сладкого ощущается солёное, и фантагевзию (когда ощущение того или иного вкуса наблюдается без явных физических причин, например, при неврозах).


Ощущение вкуса может возникать под действием радиоактивного облучения, в ряде случаев при уровнях около 1 Р/ч.

Расстройство восприятия вкуса у поваров называется бридостью.

Понятие вкус в культуре разных народов[править | править код]

  • Выражение «О вкусах (и цветах) не спорят» (вариант: «На вкус и цвет товарищей нет», шутл. «На вкус и цвет все фломастеры разные»), известное во многих языках, иллюстрирует нечёткое понимание людьми описаний вкуса, различия оценки позитивности в чувственном восприятии у разных людей и этносов, бессмысленности их абсолютного согласования.

Анатомия вкуса, или как работают вкусовые рецепторы • INMYROOM FOOD

Самая простая радость в жизни человека – это вкусная еда. Казалось бы, идешь на кухню, открываешь холодильник, проводишь определенное время у плиты – и вуаля! – ароматное блюдо уже на столе, а эндорфины в голове. Однако с точки зрения науки весь прием пищи от и до складывается в сложный многогранный процесс. А как нам иногда бывает сложно объяснить свои пристрастия в еде! 

Исследованием вкусовых рецепторов занимается молодая и еще только развивающаяся наука — физиология вкуса. Разберем некоторые основные постулаты учения, которые помогут лучше понимать наши вкусовые пристрастия и сиюминутные слабости.

Вкусовые рецепторы человека 

Вкус является одним из пяти чувств восприятия, которые очень важны для жизнедеятельности человека. Основная роль вкуса – выбирать и оценивать пищу и напитки. В этом ему во многом помогают и другие чувства, особенно обоняние. 

Механизм вкуса приводится в действие химическими веществами, содержащимися в пище и напитках. Химические частицы, собираясь во рту, превращаются в нервные импульсы, передающиеся по нервам в головной мозг, где они расшифровываются. Поверхность языка человека покрыта вкусовыми сосочками, которых у взрослого человека от 5 до 10 тысяч. С возрастом их количество уменьшается, что может вызывать определенные проблемы с различением вкусов. Сосочки, в свою очередь, содержат вкусовые почки, которые имеют определенный набор рецепторов, благодаря которым мы и ощущаем всю гамму вкусового разнообразия. 

Они реагируют только на 4 основных вкуса — сладкий, горький, соленый и кислый. Однако сегодня часто выделяют еще и пятый – умами. Родиной новичка является Япония, и в переводе с местного языка это значит «аппетитный вкус». На деле же умами представляет собой вкус белковых веществ. Ощущение умами создают глутамат натрия и другие аминокислоты. Умами является важным компонентом вкуса сыров рокфор и пармезан, соевого соуса, а также других неферментированных продуктов – грецкого ореха, помидора, брокколи, грибов, термически обработанного мяса.

Вполне естественным объяснением выбора пищи считаются социально-экономические условия, в которых живет человек, а также работа его пищеварительной системы. Тем временем, ученые все больше склоняются к варианту, что вкусовые пристрастия определяются генами и наследственностью. Впервые этот вопрос был поднят в 1931 году во время исследований, в ходе которых происходил синтез пахучей молекулы фенилтиокарбомид (ФТК). Двое ученых по-разному восприняли вещество: для одного оно было горьким и очень пахучим, а другой нашел его абсолютно нейтральным и безвкусным. Позже руководитель исследовательской группы Артур Фокс проверил ФТК на членах своей семьи, которые его также не почувствовали. 

Таким образом, в последнее время ученые склонны думать, что некоторые люди по-разному воспринимают один и тот же вкус и что одни запрограммированы набирать вес от картофеля фри, а другие могут есть его без вреда для фигуры — это вопрос наследственности. В подтверждение данному утверждению ученые из Университета Дьюк в США совместно с коллегами из Норвегии доказали, что люди имеют разный состав генов, отвечающих за запахи. В центре исследования стояло отношение гена OR7D4 RT к стероиду под названием андростенон, который в большом количестве содержится в свинине. Так, люди с одинаковыми копиями этого гена с отвращением относятся к запаху данного стероида, а обладатели двух разных копий генов (OR7D4 RT и OR7D4 WM), напротив, не чувствуют никакой неприязни.

Фотография:  в стиле , Обзоры, Философия еды – фото на IN

alexxlab

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *